Uncertainty Analysis for Complex Systems: Algorithms for Practical Systems

Dongbin Xiu

Department of Mathematics, Purdue University

Support: AFOSR, DOE, NNSA, NSF

Overview

• Stochastic PDE: Re-formulation

• Solution Strategies: generalized polynomial chaos (gPC)

• Application: Epistemic uncertainty analysis

(Re-)Formulation of PDE: Input Parameterization

$$\frac{\partial u}{\partial t}(t,x) = \mathcal{L}(u)$$
 + boundary/initial conditions

- Goal: To characterize the random inputs by a set of random variables
 - Finite number
 - Mutual independence
- If inputs == parameters
 - Identify the (smallest) independent set
 - Prescribe probability distribution
- Else if inputs == fields/processes
 - Approximate the field by a function of finite number of RVs
 - Well-studied for Gaussian processes
 - Under-developed for non-Gaussian processes
 - Examples: Karhunen-Loeve expansion, spectral decomposition, etc.

$$a(x,\omega) \approx \mu_a(x) + \sum_{i=1}^d \tilde{a}_i(x) Z_i(\omega)$$

The Reformulation

• Stochastic PDE:

$$\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u)$$
 + boundary/initial conditions

- Solution: $u(t,x,Z):[0,T]\times \bar{D}\times \mathbb{R}^{n_Z}\to \mathbb{R}$
- Uncertain inputs are characterized by n_z random variables Z
- Probability distribution of Z is prescribed

$$F_Z(s) = \Pr(Z \le s), \quad s \in \mathbb{R}^{n_Z}$$

Non-trivial task

Generalized Polynomial Chaos (gPC)

$$\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u)$$
 + boundary/initial conditions

- Focus on dependence on Z: $u(\bullet,Z): \mathbb{R}^{n_Z} \to \mathbb{R}$
- Nth-order gPC expansion:

$$u_N(t,x,Z) \triangleq \sum_{|\mathbf{k}|=0}^{N} \hat{u}_{\mathbf{k}}(t,x) \Phi_{\mathbf{k}}(Z), \text{ # of basis} = \begin{pmatrix} n_z + N \\ N \end{pmatrix}$$

• Orthogonal basis: $\int \Phi_{\mathbf{i}}(Z)\Phi_{\mathbf{i}}(Z)\rho(Z)\,dZ = \delta_{\mathbf{i}\mathbf{i}}$

$$\int \Phi_{\mathbf{i}}(Z)\Phi_{\mathbf{j}}(Z)\rho(Z)\,dZ = \delta_{\mathbf{i}\mathbf{j}}$$

- Basis functions:
 - Hermite polynomials: seminal work by *R. Ghanem*
 - General orthogonal polynomials (Xiu & Karniadakis, 2002)

- Properties:
 - Rigorous mathematics
 - High accuracy, fast convergence
 - Curse-of-dimensionality
- Numerical Approaches:
 - Galerkin vs. collocation

gPC Basis

Expectation:

$$\mathbb{E}(g(Z)) = \int_{\mathbb{R}} g(z)\rho(z)\,dz$$

Orthogonality:

$$\int \Phi_{\mathbf{i}}(z)\Phi_{\mathbf{j}}(z)\rho(z)\,dz = \mathbb{E}\left[\Phi_{\mathbf{i}}(Z)\Phi_{\mathbf{j}}(Z)\right] = \delta_{\mathbf{i}\mathbf{j}}$$

Gaussian distribution

Gamma distribution

Beta distribution

$$\int_{-\infty}^{\infty} \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) e^{-z^2} dz = \delta_{\mathbf{ij}} \quad \int_{0}^{\infty} \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) e^{-z} dz = \delta_{\mathbf{ij}} \quad \int_{-1}^{1} \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) dz = \delta_{\mathbf{ij}}$$

Hermite polynomial

Laguerre polynomial

Legendre polynomial

gPC Basis: the Choices

Orthogonality:

$$\int \Phi_{\mathbf{i}}(z)\Phi_{\mathbf{j}}(z)\rho(z)\,dz = \mathbb{E}\left[\Phi_{\mathbf{i}}(Z)\Phi_{\mathbf{j}}(Z)\right] = \delta_{\mathbf{i}\mathbf{j}}$$

Example: Hermite polynomial

$$\int_{-\infty}^{\infty} \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) e^{-z^2} dz = \delta_{\mathbf{i}\mathbf{j}}$$

The polynomials: $Z \sim N(0,1)$

$$\Phi_0 = 1$$
, $\Phi_1 = Z$, $\Phi_2 = Z^2 - 1$, $\Phi_3 = Z^3 - 3Z$, ...

- Approximation of arbitrary random variable: Requires L^2 integrability
- **Example:** Uniform random variable
 - o Convergence
 - o Non-optimal
 - o First-order Legendre is exact

Computational Efficiency

• First-order ODE: exponential random input

Error	Monte Carlo Method	Generalized Polynomial Chaos	Speed-up factor
	(# of realizations)	(# of expansion terms)	
4%	100	1	100
1.1%	1,000	2	500
0.05%	9,800	3	3,267

Effect of non-optimal basis

Stochastic Galerkin

$$\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u)$$
 + boundary/initial conditions

• Galerkin method: Seek

$$u_N(t,x,Z) \triangleq \sum_{|\mathbf{k}|=0}^N \hat{u}_{\mathbf{k}}(t,x) \Phi_{\mathbf{k}}(Z)$$

Such that

$$\mathbb{E}\left[\frac{\partial u_{N}}{\partial t}(t, x, Z)\Phi_{\mathbf{m}}(Z)\right] = \mathbb{E}\left[\mathcal{L}(u_{N})\Phi_{\mathbf{m}}(Z)\right], \quad \forall \left|\mathbf{m}\right| \leq N$$

- The result:
 - Residue is orthogonal to the gPC space
 - A set of deterministic equations for the coefficients
 - The equations are usually coupled requires new solver

Stochastic Collocation

$$\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u)$$
 + boundary/initial conditions

- Collocation: To satisfy governing equations at selected nodes
 - Allow one to use existing deterministic codes repetitively
- Sampling: (solution statistics only)
 - Random (Monte Carlo)
 - Deterministic (lattice rule, tensor grid, cubature)

- Stochastic collocation: To construct polynomial approximations
 - Node selection is critical to efficiency and accuracy
 - More than sampling

Stochastic Collocation: Interpolation

$$\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u)$$
 + boundary/initial conditions

- **Definition:** Given a set of nodes and solution ensemble, find u_N in a proper polynomial space, such that $u_N \approx u$ in a proper sense.
- Interpolation Approaches: $u_N(Z) = \sum_{j=1}^{Q} u(Z^j) L_j(Z)$ $L_i(Z^j) = \delta_{ij}, \quad 1 \le i, j \le Q$

$$L_i(Z^j) = \delta_{ij}, \quad 1 \le i, j \le Q$$

Dimension-by-dimension space filling

Tensor grids: inefficient

Sparse grids: more efficient

(Xiu & Hesthaven, SIAM J. Sci. Comput., 05)

Stochastic Computation: The Landscape

• Realistic Large-scale Complex Systems:

- Complex physics \rightarrow highly nonlinear systems
- Large number of random variables
- (Extremely) time consuming simulations
- Legacy codes (nearly impossible to re-write)

Stochastic Galerkin:

- Difficult to implement
- Good mathematical properties

• Stochastic collocation is more proper:

- Easy to implement \rightarrow virtually no coding effort
- Nonlinearity poses no additional difficulties

Epistemic Uncertainty: Setup

• Governing Equation:

$$\begin{cases} \frac{\partial v}{\partial t}(t, x, Z) = \mathcal{L}(v), & D \times (0, T] \times I_Z \\ \mathcal{B}(v) = 0, & \partial D \times [0, T] \times I_Z \\ v = v_0, & D \times \{t = 0\} \times I_Z \end{cases}$$

$$v(x,t,Z): \overline{D} \times [0,T] \times I_Z \to \mathbb{R}$$
 $I_Z \subseteq \mathbb{R}^d$

- **Epistemic** uncertainty:
 - Distribution of Z is not fully known
- "Some" prior knowledge:

$$I_{Z_i} = [\alpha_i, \beta_i], \quad -\infty \le \alpha_i < \beta_i \le \infty$$

$$I_Z \subseteq \underset{i=1}{\overset{d}{\times}} I_{Z_i}$$

• Remark: Z_i can be dependent, unbounded, and I_Z can be much smaller.

Encapsulation

- Goal: To "encapsulate" each variable
 - For each Z_i (potentially unbounded), find a bounded interval to "capture" it.
 - Requires modeling effort
- Overwhelming probability condition:

For each $I_{Z_i} = [\alpha_i, \beta_i]$, $\alpha_i < \beta_i$, find a bounded interval

$$I_{X_i} = [a_i, b_i], \quad -\infty < a_i < b_i < \infty,$$

such that

$$\Pr(Z_i \in I_i^-) \leq \delta_i$$

where $\delta_i \ge 0$, and I_i^- is the difference set

$$I_i^- = I_{Z_i} \Delta I_{X_i} = \left(I_{Z_i} \cup I_{X_i}\right) \setminus \left(I_{Z_i} \cap I_{X_i}\right)$$

- If Z_i is bounded, it is "easier" to do
- If Z_i is unbounded, X_i needs to be "big" enough

Encapsulation (cont'd)

• For each variable:
$$I_{Z_i} = [\alpha_i, \beta_i], -\infty \le \alpha_i < \beta_i \le \infty$$

$$I_{X_i} = [a_i, b_i], \quad -\infty < a_i < b_i < \infty$$

$$\Pr(Z_i \in I_i^-) \leq \delta_i$$

• For all variables:
$$I_Z \subseteq \underset{i=1}{\overset{d}{\times}} I_{Z_i}$$

$$I_X = \underset{i=1}{\overset{d}{\times}} I_{X_i} = \underset{i=1}{\overset{d}{\times}} [a_i, b_i]$$

$$I^+ = I_Z \cup I_X, \qquad I^o = I_Z \cap I_X$$

$$I^- = I_Z \Delta I_X = I^+ \setminus I^o$$
 (difference set)

• Overwhelming probability condition:

$$\Pr(Z_i \in I^-) \le \delta, \qquad \delta = 1 - (1 - \delta_i)^d$$

• Reminder: I_X may not overlap I_Z

Encapsulation Problem

• Original Problem:

$$\begin{cases} \frac{\partial v}{\partial t}(t, x, Z) = \mathcal{L}(v), & D \times (0, T] \times I_Z \\ \mathcal{B}(v) = 0, & \partial D \times [0, T] \times I_Z \\ v = v_0, & D \times \{t = 0\} \times I_Z \end{cases}$$

• Encapsulation Problem:

$$\begin{cases} \frac{\partial u}{\partial t}(t, x, X) = \mathcal{L}(u), & D \times (0, T] \times I_X \\ \mathcal{B}(u) = 0, & \partial D \times [0, T] \times I_X \\ u = v_0, & D \times \{t = 0\} \times I_X \end{cases}$$

o Solution in a hypercube: $u(x,t,X): \overline{D} \times [0,T] \times I_X \to \mathbb{R}$

$$I_X = [a_i, b_i]^d (= [-1, 1]^d, = [0, 1]^d)$$

• **Assumption:** $u(\cdot,\xi) = v(\cdot,\xi), \quad \forall \xi \in I^o$

Solution Strategy of the Encapsulation Problem

• Encapsulation Problem:

$$\begin{cases} \frac{\partial u}{\partial t}(t, x, X) = \mathcal{L}(u), & D \times (0, T] \times I_X \\ \mathcal{B}(u) = 0, & \partial D \times [0, T] \times I_X \\ u = v_0, & D \times \{t = 0\} \times I_X \end{cases}$$

• Solution strategy: Controllability on point-wise error

$$\varepsilon_n = \|u - u_n\|_{L^{\infty}(I_X)} \to 0, \qquad n \to \infty$$

- $\circ u_n$ is a good approximation in the entire domain I_X (hypercube)
- \circ Can "sample" u_n accurately for all realizations
- \circ No probability distribution is assigned in I_X .
- o Convergence is a mathematical preference, not a practical necessity
- Requirement on error control is strong but achievable
 - Sparse grid collocation (with sufficient regularity)
 - o Polynomial Galerkin (e.g., Chebyshev) methods are possible
 - Without sufficient regularity --- multi-element approach

Solution "Statistics"

• Solution of the original problem:

$$v(\cdot, Z): I_Z \to \mathbb{R}$$
 $\mu = \int_{I_Z} v(s)\rho_Z(s)ds$

• Solution in the hypercube: $I^o = I_Z \cap I_X$

$$u_n(\cdot, X): I_X \to \mathbb{R}$$

$$\mu_n = \int_{I^o} u_n(s) \rho_Z(s) ds$$

Theorem: Assume v(Z) is bounded and let $C_v = ||v||_{L^{\infty}(I_Z)}$. Let u_n be an approximation to the solution of the encapsulation problem u(X), s.t.,

$$\varepsilon_n = \|u - u_n\|_{L^{\infty}(I_X)}.$$

Then the approximation of the mean solution satisfies

$$|\mu - \mu_n| \le \varepsilon_n + C_v \cdot \delta$$

Numerical Example

• Original Problem:

$$\frac{d^2v}{dt^2}(t,Z) + \gamma \frac{dv}{dt} + kv = f\cos(\omega t), \qquad v(0) = v_0, \quad \frac{dv}{dt}(0) = v_1$$
$$Z = (\gamma, k, f, \omega, v_0, v_1) \in \mathbb{R}^6$$

• Encapsulation Problem:

$$\frac{d^2u}{dt^2}(t,X) + X_1 \frac{du}{dt} + X_2 u = X_3 \cos(X_4 t), \qquad u(0) = X_5, \quad \frac{du}{dt}(0) = X_6$$
$$X = (X_1, \dots, X_6) \in [-1,1]^6$$

 \circ Solved by 6-dimensional sparse grid collocation for t=20

Dependent Inputs

$$\frac{d^2u}{dt^2}(t,Z) + Z_1 \frac{du}{dt} + Z_2 u = Z_3 \cos(Z_4 t), \qquad u(0) = Z_5, \quad \frac{du}{dt}(0) = Z_6$$

 $Z_1 \sim \text{beta}(0.08, 0.12, 3, 2), Z_3 \sim \text{beta}(0.08, 0.1, 1, 1), Z_5 \sim \text{uniform}(0.45, 0.55), independent$

Unbounded Inputs: Effect of "Cutoff"

$$\frac{d^2u}{dt^2}(t,Z) + Z_1 \frac{du}{dt} + Z_2 u = Z_3 \cos(Z_4 t), \qquad u(0) = Z_5, \quad \frac{du}{dt}(0) = Z_6$$

Gaussian: $Z \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$, $\mathbf{C} \in \mathbb{R}^{6 \times 6}$ is the covariance matrix

$$I_Z = \mathbb{R}^6$$
, $I_X = [-a, a]^6$, then $\delta > 0$

Mixed Aleatory and Epistemic Case

$$\frac{d^2u}{dt^2}(t,Z) + Z_1 \frac{du}{dt} + Z_2 u = Z_3 \cos(Z_4 t), \qquad u(0) = Z_5, \quad \frac{du}{dt}(0) = Z_6$$

- Aleatory: $Z_1 \sim \text{beta}(0,1,0,0), Z_2 = Z_1^2 / 4 + 0.01, Z_3 \sim \text{beta}(0,1,1,1), Z_5 \sim \text{beta}(0,1,2,1)$
- Epistemic: $Z_4 \in [0.8, 1.2], Z_6 \in [-0.05, 0.05]$

CDF of the aleatory RVs at 25 prescribed values of the epistemic variables

• Solution obtained by sparse grid collocation via simultaneous construction (5-d)

Epistemic Uncertainty: Think "Outside the Box"

• Original Problem:

$$\begin{cases} \frac{\partial v}{\partial t}(t, x, Z) = \mathcal{L}(v), & D \times (0, T] \times I_{Z} \\ \mathcal{B}(v) = 0, & \partial D \times [0, T] \times I_{Z} \\ v = v_{0}, & D \times \{t = 0\} \times I_{Z} \end{cases}$$

• Encapsulation Problem:

$$\begin{cases} \frac{\partial u}{\partial t}(t, x, X) = \mathcal{L}(u), & D \times (0, T] \times I_X \\ \mathcal{B}(u) = 0, & \partial D \times [0, T] \times I_X \\ u = v_0, & D \times \{t = 0\} \times I_X \end{cases}$$

- Question: Does I_X have to be a hyber-box?
 - ✓ No. I_X can be unbounded too.
 - ✓ Numerical solution can converge in L^p norm. (More practical)
 - ✓ Additional constraints on the measures are needed.

Reference:

- J. Jakeman, M. Eldred, D. Xiu, "Numerical Approach for Quantification of Epistemic Uncertainty", *Journal of Computational Physics*, vol. 229, pp. 4648-4663, 2010.
- X. Chen, E.-J. Park, D. Xiu, Preprint, 2011.

Summary

- Uncertainty Analysis: To provide improved prediction
 - Input characterization
 - Uncertainty propagation
 - Post processing
- Generalized polynomial chaos (gPC)
 - Multivariate approximation theory
- Important directions:
 - Approximation theory in HIGH dimensions
 - Combination with data
- Data, any data, can help

Issue 1, Volume 1 2011

International Journal for

UNCERTAINTY QUANTIFICATION

Editor-in-Chief: **Nicholas Zabaras** Associate Editor: **Dongbin Xiu**

http://uncertainty-quantification.com/

Free Online
Access to
Volume 1

begell house, ind publishers